Learning Together
 By Andrea K. Knapp, Vetrece M. Jefferson

The local university's Office of Continuing Education hosted minicourse sessions, which convened two hours per week for eight weeks during a three-year period.

Math for Parents' Minicourse Curriculum

Eight-week minicourse title	NCTM Content Standard
Thinking about Numbers (offered two times)	Number and Operations
Thinking about Fractions, Decimals, and Percents (offered three times)	Number and Operations
Thinking in Patterns (offered once)	Algebra
Geometry for Parents (offered once)	Geometry and Measurement
Data for Parents (offered once)	Data Analysis and Probability

(offered once)
Note: The minicourse curriculum is available at http://mapps.math.arizona.edu/.

expects parents to remain relatively uninvo

 in their children's mathematics learning.The Math and Parent Partners (MAPPS) program (http://mapps.math.arizona.edu/) equips families to act as mathematical resource riculum was developed with National Science Foundation funding to engage the parents of students in K-grade 8 in exploring with peers the concepts and skills behind the mathematics that heir children are learning in school. Currently he MAPPS program serves sites in six states and the Virgin Islands. Members of one MAPPS site located in the southeastern United States, and the focus of this article, worked toward improving the mathematical knowledge for teaching (Ball, Thames, and Phelps 2008) of parents and eachers alike in Title I schools within its district. All parents, teachers, paraprofessionals, and children from selected schools were invited to participate. The local university partnered with MAPPS and the school district to offer minicourses for parents and teachers while children participated in related mathematical activities and games. Minicourse sessions convened two hours per week for eight weeks. Spanning a three-year period, eight separate eight-week minicourses, centered on NCTM Content and Process Standards (2000), were offered (see
1). The University's Office of Continuing Education hosted these minicourses, and instructors were graduate students in math matics education who were also practicing teachers.
In all, 115 children, 59 parents, and 33 teach rs, primarily from four Title I elementary chools, attended at least one minicourse on regular basis. Nearly twice that many par icipants attended sporadically Approximately 75 percent of attendees were single parents, and hose who attended the minicourses did so with ne to three children. Most of the parents had graduated from high school, had some technical training, and typically held low-income jobs Approximately 40 percent of the attendees wer Caucasian, 40 percent were African American, and 20 percent were Hispanic.

Activities for parents and teachers MAPPS minicourses engage parents in doin mathematics using hands-on materials, working in small groups to solve problems, and presenting their solutions to the whole group as outlined by NCTM Process Standards (NCTM 2000). Both content knowledge and pedagogical content knowledge are intertwined with the instruction for parents (Ball, Thames, and Phelps 2008), with pedagogical considerations made relevant by minicourse instructors, depending on the grade levels of participating children. To illustrate the details of the MAPPS program, we first describe the content taught each week of an eight-week minicourse curriculum unit, Think ing about Fractions, Decimals, and Percents Next, we discuss in depth the seventh week (a wo-hour session) of this particular minicourse. We close by examining the impact of the pro gram on parents, teachers, and children.
instructors who taught Thinking abou Fractions, Decimals, and Percents introduced fractions using tangram puzzles and the NCTM Learning Principle during the first wee Griffin 2007). The fraction concept was further developed in weeks 2-4, during which time par icipants learned about equivalence, common denominators, and varying fractional units. The NCTM Number and Operations, Problem Solving, and Communication Standards wer addressed as well (see table 2). Sessions 5 and hifted from fractions to decimal concepts that participants investigated through decimal strip
The minicourses covered five NCTM and two Principles (NCTM 2000)
Content Taught during MiniFractions, Decimals, and Percents

Week 1	Introduction to fractions, decimals, and percents; NCTM Learning Principle
Week 2	Simplest form; common denominators; NCTM Problem Solving Standard
Week 3	Varying the unit; fractions as division; NCTM Number and Operations Standard
Week 4	Developing fraction concepts; reciprocals; NCTM Communication Standard
Week 5	Developing decimal concepts; NCTM Technology Principle
Week 6	Connecting fractions to decimals; NCTM Reasoning \& Proof Standard
Week 7	Developing percentage concepts; NCTM Number and Operations Standard
Week 8	Connecting fractions, decimals, and percents; NCTM Connections Standard
Note: Each weekly session was two hours long.	

Finally, during week 8, parents and made percentage strips that they then com pared to the fraction and decimal strips made during previous sessions. This comparison allowed for a contextual discussion of the Connections Standard.
A sample two-hour session: Week To further exemplify the particulars of an individual session of a MAPPS minicourse, we describe the events of week 7 from the Thinking about Fractions, Decimals, and Percents minicourse. The session began at 5:30 p.m. in a large auditorium, with parents, teachers, and children grade 4 and older reviewing MAPPS homework from the week before and sharing websites they had investigated. At 6:00, the instructor began the lesson by soliciting examples of when percentages are used in real life. Parents suggested hat tithes are 10 percent of one's salary and that tail stores offer percentages off the price of when they have sales.
Next, participants discussed the meaning of percent as "for every hundred." To develop this concept, participants received several shaded squares (hundred grids without the lines) and asked to estimate the percentage of the haved area (see fig. 1a). Some drew lines to separate parts, and others made guesses. Many close to the actual percentage.
Participants then received transparent hundred grids (see fig. 1b) to overlay the shaded squares. While discussing their methods, they

The week 7 homework task had families determine the percentage that each fifth represented for the entire grid to equal 100 percent and be ready to discuss their findings at the next session.

Shade 60\% of this grid.
which equated to two-and-a-half shaded rect angles. So they decided to shade the remainder of the third rectangle to complete the representation for 60 percent. From there they saw hat each rectangle must equal twenty, allowing them to verify their solution.

Children's activities

While parents and teachers learned mathemat ics content and pedagogy, children in preschool through grade 3 participated in age-appropriate mathematics activities and games correspondng to the content that the parents were learn ing. Children were separated into grade bands pre-K, K-grade 2 , and grades $2-3$. Activities were Some activities were derived directly from the MAPPS curriculum (Griffin 2007); others were aken from the Investigations in Number, Data and Space curriculum (Akers et al. 1998). For example, the Fill Two game challenged children oo color decimal grids, similar to the transpar ency grids that parents used in week 7 . Student chose from a stack of decimal cards and colored their grids to match the card they had drawn from the stack. Opponents successively chose cards from the stack, and the first to fill two grids-each representing one unit-would win.
In addition to the tasks completed during the wo-hour sessions, participants received take home games, activities, and cutout manipula tives, such as base-ten blocks, pattern blocks, and tangrams, to reinforce and enact concept earned in MAPPS. To sustain family game time and excitement about mathematics, the instructors encouraged family members to compete with one another when they used their take-home materials. Thus, MAPPS supported parents in teaching their children mathemat ics related to both formal, school-based task and to informal learning experiences as well.

Pizza and soda were served to everyone midway through each two-hour session, and children aged pre-K-grade 3 played outside during a short recess time.

Impact of MAPPS minicourses

 To assess the impact of the MAPPS minicourses, parents and teachers took pretests and posttests 2006) and pretest and posttest attitude surveys (Tapia 1996). A focus group of parents, teachers, and children also participated in pretest and posttest interviews.
Increased content knowledge

Parents and teachers improved both in the areas of common content knowledge, which means knowing basic math, as well as in the specialized content knowledge of how mathematics arises in classrooms (Ball, Thames, and Phelps 2008). Pretesting and posttesting following each eight-week minicourse showed that teachers as a group started at a higher baseline knowledge level than parents, but both groups improved their knowledge. An example of improved content knowledge included a mother who learned hat one-half of one-fourth is one-eighth. She related this knowledge to her experience of preparing for a recent college entrance exam where a practice question was exactly that of taking one-half of one-fourth.

A bridge to continuing education

MAPPS had a twofold benefit. First, it equipped parents with content knowledge to help their children with math; and second, it opened a ber faricipants to continue their own ducation. Thus, MAPPS appeared to provide a echansm for breaking a generational cycle of ics. Teab and low achievement in mathemat ics. Teachers reported extending and reinforcing

Paricpants celebrated completing each
eight-week minicourse
with a graduation ceremony at the ceremony at
university.
better assisted her daughter with place-value concepts in multidigit addition than ungrouped pennies or drawings did (Van de Walle, Karp and Bay-Williams 2010).

Strengthened relationships

In addition to building parent-child relation ships, the learning community that MAPPS promotes strengthened parent-teacher rela ionships. Teachers and parents enjoyed a leve laying field in which all were leaning for the desired end of helping children. Parents appre ciated teachers' extra efforts to help children learn, and teachers came to view parents as dedicated individuals invested in the academic uccess of their children. The minicourses were lighthearted in nature; families and teachers enjoyed the collaborative approach to learning.

mproved test scores

To measure impact on children, qualitative interview data was analyzed, and standardized test scores were collected from a sampling of students. Additionally, students took localized ests on content directly related to minicours opics. Parents reported that their children' math performance in school improved. Thi result was substantiated by gains in the local ized test scores. Moreover, standardized test scores of a sample of forty-seven MAPPS students increased significantly ($p=0.001$) and to a greater degree than a group of forty-six comparion students two years later in 2009-2011. For three-year comparison, a sample of thirty-nine MAPPS students improved their scores signifi cantly from 2008-2011 ($p<0.001$); whereas the comparison group of thirty-six students did no improve significantly. Finally, interviews follow ing the minicourses revealed that practicing how to explain solutions in front of or to the parents boosted children's confidence and motivation to learn mathematics.

On the same team
Parents desire to assist their children with learn ing mathematics, and they appreciate instruc tion in how to do so. Teachers can become discouraged when parents do not help student with mathematics homework, or when parents help inappropriately for such Standards based outcomes as Problem Solving and Reasoning. Our MAPPS program revealed that
chools benefit when they pair parental involve ment classes in matheratics with professiona development for teachers. Such professiona development should include both content and pedagogical aspects that encourage participant to collaborate in problem solving share solu ions, and explore appropriate manipulative use. In so doing parents and teachers will join he same team to boost student achievement he same team to boost student achievemen and understanding of mathematics.

REFERENCES

Akers, Joan, Cornelia Tierney, Claryce Evans, and Megan Murray. 1998. Name That Portion: Fractions, Percents, and Decimals Curriculum Unit for Level 5. Menlo Park, CA: Dale Seymour.
Ball, Deborah L., Mark H. Thames, and Geoffrey Phelps. 2008. "Content Knowledge for Teaching: What Makes It Special?" Journal of Teacher Education 59 (5): 389-407.
D'Agostino, Jerome V., Larry V. Hedges, Kenneth K. Wong, and Geoffrey D. Borman. 2000 "Title I Home-School Partnerships: Effects on Parenting Practices and Student Achievement." In Title I: Compensatory Education at the Crossroads, edited by Geoffrey D. Borman, Samuel C. Stringfield, and Robert E. Slavin pp. 119-38. Mahwah, NJ: Lawrence Erlbaum Associates.
Epstein, Joyce L. 1994. "Theory to Practice School and Family Partnerships Lead to School Improvement and Student Success." In School, Family, and Community Interaction: A View from the Firing Lines, edited by Cheryl Fagnano, and Beverly Werber, pp. 39-52. Boulder, CO: Westview Press. Griffin, Linda, Darcy Schroeder, Mary
Schumacher, and University of Arizona. 2007. Math for Parents Minicourse: Thinking about Fractions, Decimals, and Percents. Plymouth, MI: Hayden-McNeil.
Henderson, Anne T., and Karen L. Mapp. 2002. A New Wave of Evidence: The Impact of School, Family, and Community Connections on Student Achievement. Austin, TX National Center for Family and Community Connections with Schools, Southwest Educa tional Development Laboratory.
Henderson, Anne T., Karen L. Mapp, Vivian R. Johnson, and Don Davies. 2007. Beyond the Bake Sale: The Essential Guide to Family-

School Partnerships. New York: The New Press.
Jackson, Kara, and Janine Remillard. 2005 "Rethinking Parent Involvement: African American Mothers Construct Their Roles in the Mathematics Education of Their Chil dren." School Community Journal 15 (1) dren."
$51-73$
Kellaghan, Thomas, Kathryn Sloane, Benjamin Alvarez, and Benjamin S. Bloom. 1993 The Home Environment and School Learning: Promoting Parental Involvement in the Education of Children. San Francisco, CA: Jossey-Bass.
Learning Mathematics for Teaching (LMT)/ Study of Instructional Improvement. 2006 Instrument Dissemination Workshop Binder University of Michigan School of Education. National Council of Teachers of Mathematics (NCTM). 2000. Principles and Standards for School Mathematics. Reston, VA: NCTM. Peressini, Dominic D. 1998. "The Portrayal of Parents in the School Mathematics Reform Literature: Locating the Context for Parental Involvement." Journal for Research in Mathematics Education 29 (5): 555-82.
Tapia, Martha. 1996. The Attitudes toward Mathematics Instrument. Paper presented at the annual meeting of the Mid-South Educa tional Research Association, Tuscaloosa, AL. Van de Walle, John A., Karen Karp, and Jennifer Bay-Williams. 2010. Elementary and Middle School Mathematics: Teaching Developmen tally. 7th ed. Boston, MA: Allyn and Bacon.

Andrea K. Knapp, aknapp@uwsp.edu urrently teaches mathematics education courses at The University of Wisconsin in Stevens Point. She was codirector of the MAPPS program at the University of Georgia Griffin Campus. verrece M. Jefferson, vetrece grade @gscs.org, teaches fifth Griffin, Georgia, and has been a MAPPS Structor. Racheal Landers, rlanders @uga.edu, has been the MAPPS gram coordinator at the University Georgia Griffin Campus while a ree authors are interested in parenta involvement in mathematics.

